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ABSTRACT—Chess has come a long way since 

it first appeared on a computer, and new chess 

algorithms are developed every year that 

outperform the previous ones. This paper discusses 

the different techniques used to create a chess 

program that outperforms when compared to 

studies based on AI and deep learning algorithms 

available in the literature. Study also highlights 

how few of the model architecture described 

exceed present top chess engines or professional 

human experts; some have reached extremely high 

performance, setting new domain benchmarks, 

while others employ a novel architecture or 

approach and produce average results. 
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I. INTRODUCTION 
Tradition chess game algorithms available 

in the literature uses manual feature extraction and 

tuning. These methods are actually based on heat 

and trials and may not meet researcher’s 

expectation. Due to automated learning, fast 

processing and excellent performance of deep 

learning in many applications, it gains popularity in 

the development of computer chess game. In fact, 

improvement in the performance of chess using 

artificial intelligence became one of the most 

researched filed in this domain [1]. The concept for 

developing such applications comes from the fact 

that people may enhance their skills in any game 

after playing it a few times. Many academics have 

been encouraged to work on deep learning's use in 

games, as well as striving for artificial general 

intelligence, by its capacity to recognize repeated 

patterns from dataset collected. The goal of this 

study is to look at existing research on leveraging 

deep learning to create chess engines. The articles 

presented here discuss the evolution of extremely 

simple network designs to highly sophisticated 

networks containing a wide range of characteristics 

as well as numerous hand-tuned features and 

domain-specific information. We try to understand 

how the architectures and various search algorithms 

perform in order to increase the model's 

performance. 

The articles explain the characteristics of 

the various architectures employed, their benefits 

and drawbacks, and their performance in 

comparison to a certain benchmark. The 

architecture used is determined by the board game 

chosen, the target engine or minimum score to be 

achieved, or the determined to improve a degree of 

performance previously inaccessible in that 

environment. Multi-dimensional Recurrent Neural 

Networks (MDRNN), MultiLayer Perceptron 

(MLP), and Convolutional Neural Networks (CNN) 

are among the designs studied. This paper also 

emphasizes the necessity of selecting an effective 

search strategy. Choosing an effective searching 

algorithm is critical for a system to have as 

minimum time complexity as possible. Because 

certain architectures only operate with specific 

input formats, the input representation must also be 

addressed. A Convolutional Neural Network, for 

example, performs better when input is represented 

as an array. However, processing each image into a 

multidimensional array takes time and will slow 

down the operation. The efficiency of a flat array 

encoded with bits can be improved since it is much 

easier to compute on. 

 

1.1 Chess Engines 

Chess game was played initially on 10
th

 

century by human but after the development of 

artificial intelligence and machine learning, 

researchers always intended to improve its 

performance. Each engine is designed to operate on 

a typical computer, with no additional processing 

units necessary unless a highly intricate game tree 

or very high-definition visuals are required. 

Furthermore, several games are designed solely to 

be played via a network between two linked client 

PCs, allowing people to compete against one 

another or the computer. 

 Min-Max Algorithm: The Min-Max Algorithm 

is a decision-based method that is employed in 

a game tree to minimize the worst-case loss. It 

was originally designed for two players, but it 
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has since grown into other variations that may 

be used in more complicated versions of chess 

and other games. 

 Pruning: Pruning is the process of cut-off the 

branch of the tree when the lowest or 

maximum node in a game tree has reached the 

value necessary and further traveling is not 

required. 

 Surakarta Chess: It contains six horizontal 

lines and six vertical lines in this Chinese 

variation of combat chess. Chess pieces are 

placed on the thirty-six locations where 

horizontal and vertical lines cross. Eight arc 

lines connect all of these lines. The game is 

played with twelve chess pieces on each side. 

 Hexagonal Chess: The hexagonal chess board 

has 91 cells and is shaped like a hexagon. 

Gliski's version, having a hexagonal board 

which is symmetric, is one of the most well-

known. The chessmen's rules and moves differ 

according on the manufacturer. 

 

 

II. LITARATURESURVEY 
Over the last few decades, development of 

chess program using AI and ML attracted attention 

of many researchers. While the initial chess 

computers were incapable of challenging even a 

rookie player, now-a-days, a chess program 

developed using AI can perform better the even 

human professionls as seen by recent man vs. 

machine contests. Various researches have 

attempted to develop a computer that learns to play 

cognitive games with little or no prior 

understanding of the game's rules, according to a 

number of published papers. A typical chess 

playing machine investigates all of the possible 

moves from a chessboard setup before deciding on 

the next best move. The Deep Blue chess engine's 

brute-force searching approach has had a 

significant influence on artificial intelligence, 

although it has been proven to be resource 

intensive. The notion of Artificial Neural Networks 

is used in this research to provide a relatively easy 

and efficient way to developing an intelligent chess 

engine that can help and hint at possible moves. 

Numerous methods have been used in a 

number of games throughout the course of more 

than 50 years of study in the field of computational 

engineering. Backgammon and checkers have both 

used reinforcement learning successfully [2]. 

Although reinforcement learning has been applied 

to chess, the resulting systems have only human 

master-level playing strength, which is far lower 

than the grandmaster-level playing power of state-

of-the-art chess systems [3][4]. In [4], Thrun et al. 

proposed NeroChess based on automated training 

using end results. NeuroChess employs Artificial 

Neural Network-based assessment mechanisms 

(ANN). It employs an explanation-based neural 

network variation known as explanation-based 

neural network learning (EBNN). It creates neural 

network evaluation functions with TD. The sizes of 

the different board games are either fixed or 

adjustable. The branching factor grows 

exponentially as the board size grows. Because of 

these scaling difficulties, game engines have 

become more sophisticated in terms of time and 

space. As a result, in article [6], authors employs 

Multi-dimensional Recurrent Neural Networks 

(MDRNN) to address such a problem.  

The results revealed that the size of the 

board had no meaningful impact on the 

architecture's performance.Neural networks are 

used to discover the best path from one board state 

to the next. When neural networks were used, it 

was discovered that pruning of expensive branches 

was done at a larger scale. This helped to pave the 

way for hybrid AI game-tree search systems. 

Therefore, in [7], Dendek et al. proposed a hybrid 

model consist of two CNN architecture. The 

suggested method is mathematically oriented, and 

it works by computing the Manhattan distance 

between a possible target square and a preset 

square that is arbitrarily chosen. 

In recent years, developing alternative 

evaluation functions that may establish weights for 

the chess engine's neural network has been a 

prominent research area. The authors in [8], present 

a method for determining the positional value of 

each chess piece in this work. This chess engine 

employs the Alpha-Beta searching algorithm with 

iterative deepening, the Quiescence technique for 

position stability, hash tables, and the 0x88 

hexadecimal approach for move generation. 

It was demonstrated in [9] that trained 

deep value neural networks can play chess as well 

as high-level human chess players, without having 

to look ahead more than one move. The 

performance of Multilayer Perceptron and 

Convolutional Neural Network is investigated in 

this study. Different board representations are 

produced from data sets including a collection of 

games represented in Portable Game Notation 

(PGN). The Multilayer Perceptron and 

Convolutional Neural Network architectures 

employ these board representations as inputs. 

Stockfish, one of the most sophisticated chess 

engines, was utilized to assign a fractional 

centipawn (cp) value to each chess board position 

as a label for classification and regression 

experiments. The Mini-Max search and Alpha-Beta 
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pruning algorithms are used in this neural network-

based chess software to choose the next move. The 

results of the tests revealed that MLPs 

outperformed CNNs. The suggested system was 

still lagging behind the strongest existing chess 

engines and the best human players, based on these 

results 

 

 
Figure 1: DeepChess Architecture [10] 

 

In [10], the DeepChess program is 

developed, and its performance is comparable to 

that of grandmaster-level players. DeepChess' 

architecture is based on a deep neural network and 

shown in Figure 1. Manually, no domain-specific 

knowledge is supplied to the model. The training of 

deep neural networks is divided into two sections: 

unsupervised pre-training and supervised training. 

The model's unsupervised training allows for the 

identification of high-level characteristics. The 

model can analyze two chess board positions and 

choose the more advantageous one thanks to 

supervised training. The training is entirely based 

on a few million chess game databases. DeepChess 

provides scores to probable positions, with the 

score representing the position's quality. This 

model takes two locations as input and learns to 

predict which is the best position after comparing 

the two. In order to train, pairs of two moves are 

supplied as input. One move from a game in which 

White wins and another move from a game in 

which Black wins are included in these pairings. 

 

An intelligent chess board is created in 

[11], which is extremely beneficial for novices to 

learn the rules of chess. The sophisticated method 

described here assists users in understanding all of 

the right locations of each chess piece on the board. 

The training technique for this project was a back 

propagation neural network. Without the use of 

computer devices, the architecture presented here 

works with the chess pieces according to their 

properties. Given the present condition of the 

board, the goal is to determine the next piece to be 

moved as well as the possible locations for this 

piece to go to. 

Machine learning is utilized in [12] to 

build a new chess engine dubbed Giraffe. The 

TDLeaf method is used in the Giraffe software 

presented in this paper. The system accepted 

locations as inputs and outputted a sequence of 

integers that served as a signature for each position. 

The great search efficiency of humans is due to 

location similarity. If individuals can recognize the 

equally efficient actions, needless searching might 

be avoided. This resulted in a significant reduction 

in the average branching factor of the search trees. 

The Giraffe engine calculates the probability of all 

possible chess moves for a given chess piece.  

This engine's primary flaw is its slow 

search pace, which is caused by its poor hit rate. 

The major aim of this article was to properly assess 

the location; otherwise, further searches would be 

necessary to compensate. This chess engine 

performed exceptionally well at the start and finish 

of the game because it concentrated on the tough 

moves rather than the long moves, and it also 

recognized intricate plays that are difficult for 

human players to comprehend. Extending further 

his study, Lai et al. proposed evaluator network that 
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is made up of three layers (two hidden layers and 

an output layer), with all hidden nodes using 

Rectified Linear activation (ReLU). Features from 

various modalities are kept separate in the first two 

levels.  

Only the last two layers are completely 

linked in order to capture interactions between 

high-level ideas obtained from distinct modalities' 

characteristics. The network design and restricted 

connection strategy are depicted in Figure 2, where 

an arrow indicates that all nodes in the first group 

are connected to all nodes in the second group. 

 

 

 
Figure 2: Architecture of proposed network. 

 

In [13], author examines several 

techniques for training ANNs to assess chess 

positions using various combinations of 

architectures and input formats. The evaluation 

function of Stockfish, one of the best known chess 

engines, was used to label a dataset of roughly 3 

million distinct chess situations played by 

extremely experienced chess players. They 

compared the results of multilevel perceptron and 

convolutional neural network for four different 

datasets that were normalized differently for 

different chess board notations, namely Bitmap and 

Algebraic notation. The findings demonstrate that 

MLP outperforms CNN for all datasets. Bitmap 

notation produces superior results whereas 

algebraic notation, which provides more 

information to the network, has a negative impact 

on the outcomes. 

CrazyAra, a supervised learning based 

chess variant named crazyhouse, is presented in 

[14]. To forecast game movements, they employed 

networks and Monte-Carlo Tree Search. Although 

the dataset is smaller and of lower quality than 

those of Go and chess, the findings achieved are 

encouraging. For greater performance, they 

employed a more compact input board presentation 

by making the state completely Markovian, 

removing the history component in favor of the 

AlphaZero, and rescaling/normalization. 

Surakarta chessboard (Figure 3) in 

computer gaming is a network application, 

according to Liqun Zhang et al [15]. Both sides on 

the client-side play on a server, and the game starts 

when both player log-in to the server. The server 

must be unique since the game alone determines 

who wins, and human interference merely slows 

down the engine. Unlike normal chess, this variant 

of the game follows the rule of movement of pieces 

either one square vertically or diagonally to a 

location where no other piece is present. In 
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addition, the board is shown in a unique style 

.  

 
Figure 3: Surakarta Chess Board [16] 

 

An improved chess game based on 

artificial neural network is proposed by Sharma et 

al. [18]. During the training phase, the proposed 

approach encodes the flow sequence, with input 

moves taken from the grandmaster game.  

The encoded movements are then input 

into a specially constructed neural network, which 

is subsequently trained to provide the desired 

output. The algorithm picks up on the patterns 

(moves and strategies) that the human grandmasters 

create throughout their championship games. The 

model is trained till it minimizes the error to an 

optimum value. Figure 4 illustrates the train 

process of ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Training of ANN model 

 

III. CONCLUSION 
After analyzing past research on 

application of AI and DL for chess, we discovered 

that there exist a variety of architectures and 
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algorithms that are suitable for building a Chess 

game that can outperform existing algorithms or 

even defeat human experts. It has been discovered 

that certain search approaches, structures, and 

algorithms provide promising results. 

ANN has shown a significant reduction in 

the examination of low-performing board seats, 

with just the mostbeneficial options being 

investigated. Hardcoded engines, on the other hand, 

can explore millions of moves in a second and 

identify checkmate moves fast as the game 

progresses. ANNs can play tactical games and have 

won games, but they take a lot of computing 

resources as compared to hardcoded engines.  
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