

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 2232-2237 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030722322237 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2232

Modelling Chess AI using Deep Learning – Survey

Magesh Surya Ambikapathi
Computer Science Student, D.R.B.C.C.C Hindu college, Chennai, Tamilnadu

Corresponding Author: MageshSurya Ambikapathi

Submitted: 01-07-2021 Revised: 13-07-2021 Accepted: 16-07-2021

ABSTRACT—Chess has come a long way since

it first appeared on a computer, and new chess

algorithms are developed every year that

outperform the previous ones. This paper discusses

the different techniques used to create a chess

program that outperforms when compared to

studies based on AI and deep learning algorithms

available in the literature. Study also highlights

how few of the model architecture described

exceed present top chess engines or professional

human experts; some have reached extremely high

performance, setting new domain benchmarks,

while others employ a novel architecture or

approach and produce average results.

Keywords— Chess programs, Artificial

Intelligence, Deep Learning

I. INTRODUCTION
Tradition chess game algorithms available

in the literature uses manual feature extraction and

tuning. These methods are actually based on heat

and trials and may not meet researcher’s

expectation. Due to automated learning, fast

processing and excellent performance of deep

learning in many applications, it gains popularity in

the development of computer chess game. In fact,

improvement in the performance of chess using

artificial intelligence became one of the most

researched filed in this domain [1]. The concept for

developing such applications comes from the fact

that people may enhance their skills in any game

after playing it a few times. Many academics have

been encouraged to work on deep learning's use in

games, as well as striving for artificial general

intelligence, by its capacity to recognize repeated

patterns from dataset collected. The goal of this

study is to look at existing research on leveraging

deep learning to create chess engines. The articles

presented here discuss the evolution of extremely

simple network designs to highly sophisticated

networks containing a wide range of characteristics

as well as numerous hand-tuned features and

domain-specific information. We try to understand

how the architectures and various search algorithms

perform in order to increase the model's

performance.

The articles explain the characteristics of

the various architectures employed, their benefits

and drawbacks, and their performance in

comparison to a certain benchmark. The

architecture used is determined by the board game

chosen, the target engine or minimum score to be

achieved, or the determined to improve a degree of

performance previously inaccessible in that

environment. Multi-dimensional Recurrent Neural

Networks (MDRNN), MultiLayer Perceptron

(MLP), and Convolutional Neural Networks (CNN)

are among the designs studied. This paper also

emphasizes the necessity of selecting an effective

search strategy. Choosing an effective searching

algorithm is critical for a system to have as

minimum time complexity as possible. Because

certain architectures only operate with specific

input formats, the input representation must also be

addressed. A Convolutional Neural Network, for

example, performs better when input is represented

as an array. However, processing each image into a

multidimensional array takes time and will slow

down the operation. The efficiency of a flat array

encoded with bits can be improved since it is much

easier to compute on.

1.1 Chess Engines

Chess game was played initially on 10
th

century by human but after the development of

artificial intelligence and machine learning,

researchers always intended to improve its

performance. Each engine is designed to operate on

a typical computer, with no additional processing

units necessary unless a highly intricate game tree

or very high-definition visuals are required.

Furthermore, several games are designed solely to

be played via a network between two linked client

PCs, allowing people to compete against one

another or the computer.

 Min-Max Algorithm: The Min-Max Algorithm

is a decision-based method that is employed in

a game tree to minimize the worst-case loss. It

was originally designed for two players, but it

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1855-1864 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030718551864 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2233

has since grown into other variations that may

be used in more complicated versions of chess

and other games.

 Pruning: Pruning is the process of cut-off the

branch of the tree when the lowest or

maximum node in a game tree has reached the

value necessary and further traveling is not

required.

 Surakarta Chess: It contains six horizontal

lines and six vertical lines in this Chinese

variation of combat chess. Chess pieces are

placed on the thirty-six locations where

horizontal and vertical lines cross. Eight arc

lines connect all of these lines. The game is

played with twelve chess pieces on each side.

 Hexagonal Chess: The hexagonal chess board

has 91 cells and is shaped like a hexagon.

Gliski's version, having a hexagonal board

which is symmetric, is one of the most well-

known. The chessmen's rules and moves differ

according on the manufacturer.

II. LITARATURESURVEY
Over the last few decades, development of

chess program using AI and ML attracted attention

of many researchers. While the initial chess

computers were incapable of challenging even a

rookie player, now-a-days, a chess program

developed using AI can perform better the even

human professionls as seen by recent man vs.

machine contests. Various researches have

attempted to develop a computer that learns to play

cognitive games with little or no prior

understanding of the game's rules, according to a

number of published papers. A typical chess

playing machine investigates all of the possible

moves from a chessboard setup before deciding on

the next best move. The Deep Blue chess engine's

brute-force searching approach has had a

significant influence on artificial intelligence,

although it has been proven to be resource

intensive. The notion of Artificial Neural Networks

is used in this research to provide a relatively easy

and efficient way to developing an intelligent chess

engine that can help and hint at possible moves.

Numerous methods have been used in a

number of games throughout the course of more

than 50 years of study in the field of computational

engineering. Backgammon and checkers have both

used reinforcement learning successfully [2].

Although reinforcement learning has been applied

to chess, the resulting systems have only human

master-level playing strength, which is far lower

than the grandmaster-level playing power of state-

of-the-art chess systems [3][4]. In [4], Thrun et al.

proposed NeroChess based on automated training

using end results. NeuroChess employs Artificial

Neural Network-based assessment mechanisms

(ANN). It employs an explanation-based neural

network variation known as explanation-based

neural network learning (EBNN). It creates neural

network evaluation functions with TD. The sizes of

the different board games are either fixed or

adjustable. The branching factor grows

exponentially as the board size grows. Because of

these scaling difficulties, game engines have

become more sophisticated in terms of time and

space. As a result, in article [6], authors employs

Multi-dimensional Recurrent Neural Networks

(MDRNN) to address such a problem.

The results revealed that the size of the

board had no meaningful impact on the

architecture's performance.Neural networks are

used to discover the best path from one board state

to the next. When neural networks were used, it

was discovered that pruning of expensive branches

was done at a larger scale. This helped to pave the

way for hybrid AI game-tree search systems.

Therefore, in [7], Dendek et al. proposed a hybrid

model consist of two CNN architecture. The

suggested method is mathematically oriented, and

it works by computing the Manhattan distance

between a possible target square and a preset

square that is arbitrarily chosen.

In recent years, developing alternative

evaluation functions that may establish weights for

the chess engine's neural network has been a

prominent research area. The authors in [8], present

a method for determining the positional value of

each chess piece in this work. This chess engine

employs the Alpha-Beta searching algorithm with

iterative deepening, the Quiescence technique for

position stability, hash tables, and the 0x88

hexadecimal approach for move generation.

It was demonstrated in [9] that trained

deep value neural networks can play chess as well

as high-level human chess players, without having

to look ahead more than one move. The

performance of Multilayer Perceptron and

Convolutional Neural Network is investigated in

this study. Different board representations are

produced from data sets including a collection of

games represented in Portable Game Notation

(PGN). The Multilayer Perceptron and

Convolutional Neural Network architectures

employ these board representations as inputs.

Stockfish, one of the most sophisticated chess

engines, was utilized to assign a fractional

centipawn (cp) value to each chess board position

as a label for classification and regression

experiments. The Mini-Max search and Alpha-Beta

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1855-1864 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030718551864 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2234

pruning algorithms are used in this neural network-

based chess software to choose the next move. The

results of the tests revealed that MLPs

outperformed CNNs. The suggested system was

still lagging behind the strongest existing chess

engines and the best human players, based on these

results

Figure 1: DeepChess Architecture [10]

In [10], the DeepChess program is

developed, and its performance is comparable to

that of grandmaster-level players. DeepChess'

architecture is based on a deep neural network and

shown in Figure 1. Manually, no domain-specific

knowledge is supplied to the model. The training of

deep neural networks is divided into two sections:

unsupervised pre-training and supervised training.

The model's unsupervised training allows for the

identification of high-level characteristics. The

model can analyze two chess board positions and

choose the more advantageous one thanks to

supervised training. The training is entirely based

on a few million chess game databases. DeepChess

provides scores to probable positions, with the

score representing the position's quality. This

model takes two locations as input and learns to

predict which is the best position after comparing

the two. In order to train, pairs of two moves are

supplied as input. One move from a game in which

White wins and another move from a game in

which Black wins are included in these pairings.

An intelligent chess board is created in

[11], which is extremely beneficial for novices to

learn the rules of chess. The sophisticated method

described here assists users in understanding all of

the right locations of each chess piece on the board.

The training technique for this project was a back

propagation neural network. Without the use of

computer devices, the architecture presented here

works with the chess pieces according to their

properties. Given the present condition of the

board, the goal is to determine the next piece to be

moved as well as the possible locations for this

piece to go to.

Machine learning is utilized in [12] to

build a new chess engine dubbed Giraffe. The

TDLeaf method is used in the Giraffe software

presented in this paper. The system accepted

locations as inputs and outputted a sequence of

integers that served as a signature for each position.

The great search efficiency of humans is due to

location similarity. If individuals can recognize the

equally efficient actions, needless searching might

be avoided. This resulted in a significant reduction

in the average branching factor of the search trees.

The Giraffe engine calculates the probability of all

possible chess moves for a given chess piece.

This engine's primary flaw is its slow

search pace, which is caused by its poor hit rate.

The major aim of this article was to properly assess

the location; otherwise, further searches would be

necessary to compensate. This chess engine

performed exceptionally well at the start and finish

of the game because it concentrated on the tough

moves rather than the long moves, and it also

recognized intricate plays that are difficult for

human players to comprehend. Extending further

his study, Lai et al. proposed evaluator network that

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1855-1864 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030718551864 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2235

is made up of three layers (two hidden layers and

an output layer), with all hidden nodes using

Rectified Linear activation (ReLU). Features from

various modalities are kept separate in the first two

levels.

Only the last two layers are completely

linked in order to capture interactions between

high-level ideas obtained from distinct modalities'

characteristics. The network design and restricted

connection strategy are depicted in Figure 2, where

an arrow indicates that all nodes in the first group

are connected to all nodes in the second group.

Figure 2: Architecture of proposed network.

In [13], author examines several

techniques for training ANNs to assess chess

positions using various combinations of

architectures and input formats. The evaluation

function of Stockfish, one of the best known chess

engines, was used to label a dataset of roughly 3

million distinct chess situations played by

extremely experienced chess players. They

compared the results of multilevel perceptron and

convolutional neural network for four different

datasets that were normalized differently for

different chess board notations, namely Bitmap and

Algebraic notation. The findings demonstrate that

MLP outperforms CNN for all datasets. Bitmap

notation produces superior results whereas

algebraic notation, which provides more

information to the network, has a negative impact

on the outcomes.

CrazyAra, a supervised learning based

chess variant named crazyhouse, is presented in

[14]. To forecast game movements, they employed

networks and Monte-Carlo Tree Search. Although

the dataset is smaller and of lower quality than

those of Go and chess, the findings achieved are

encouraging. For greater performance, they

employed a more compact input board presentation

by making the state completely Markovian,

removing the history component in favor of the

AlphaZero, and rescaling/normalization.

Surakarta chessboard (Figure 3) in

computer gaming is a network application,

according to Liqun Zhang et al [15]. Both sides on

the client-side play on a server, and the game starts

when both player log-in to the server. The server

must be unique since the game alone determines

who wins, and human interference merely slows

down the engine. Unlike normal chess, this variant

of the game follows the rule of movement of pieces

either one square vertically or diagonally to a

location where no other piece is present. In

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1855-1864 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030718551864 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2236

addition, the board is shown in a unique style

.

Figure 3: Surakarta Chess Board [16]

An improved chess game based on

artificial neural network is proposed by Sharma et

al. [18]. During the training phase, the proposed

approach encodes the flow sequence, with input

moves taken from the grandmaster game.

The encoded movements are then input

into a specially constructed neural network, which

is subsequently trained to provide the desired

output. The algorithm picks up on the patterns

(moves and strategies) that the human grandmasters

create throughout their championship games. The

model is trained till it minimizes the error to an

optimum value. Figure 4 illustrates the train

process of ANN.

Figure 4: Training of ANN model

III. CONCLUSION
After analyzing past research on

application of AI and DL for chess, we discovered

that there exist a variety of architectures and

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1855-1864 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030718551864 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2237

algorithms that are suitable for building a Chess

game that can outperform existing algorithms or

even defeat human experts. It has been discovered

that certain search approaches, structures, and

algorithms provide promising results.

ANN has shown a significant reduction in

the examination of low-performing board seats,

with just the mostbeneficial options being

investigated. Hardcoded engines, on the other hand,

can explore millions of moves in a second and

identify checkmate moves fast as the game

progresses. ANNs can play tactical games and have

won games, but they take a lot of computing

resources as compared to hardcoded engines.

REFERENCES
[1] Schaeffer, Jonathan, MarkianHlynka, and

ViliJussila. "Temporal difference learning

applied to a high-performance game-playing

program." In Proceedings of the 17th

international joint conference on Artificial

intelligence-Volume 1, pp. 529-534. 2001.

[2] Tesauro, Gerald. "Practical issues in

temporal difference learning." Machine

learning 8, no. 3 (1992): 257-277.

[3] Baxter, Jonathan, Andrew Tridgell, and Lex

Weaver. "Learning to play chess using

temporal differences." Machine Learning 40,

no. 3 (2000): 243-263.

[4] Lai, Matthew. "Giraffe: Using deep

reinforcement learning to play chess." arXiv

preprint arXiv:1509.01549 (2015).

[5] Thrun, Sebastian. "Learning to play the

game of chess." Advances in neural

information processing systems 7 (1995).

[6] T. Schaul, J. Schmidhuber, “A Scalable

Neural Network Architecture for Board

Games,” Artificial Neural Networks –

ICANN 2009 Lecture Notes in Computer

Science, vol 5768, pp. 1005-1014, 2009.

[7] C. Dendek and J. Mandziuk, "A Neural

Network Classifier of Chess Moves," 2008

Eighth International Conference on Hybrid

Intelligent Systems, Barcelona, 2008, pp.

338-343.

[8] E. Vázquez-Fernández, C. A. CoelloCoello

and F. D. SagolsTroncoso, "Assessing the

positional values of chess pieces by tuning

neural networks' weights with an

evolutionary algorithm," World Automation

Congress 2012, Puerto Vallarta, Mexico,

2012, pp. 1-6.

[9] Sabatelli, Matthia. "Learning to Play Chess

with Minimal Lookahead and Deep Value

Neural Networks." PhD diss., Faculty of

Science and Engineering, 2017.

[10] O. E. David, N. S. Netanyahu, and L. Wolf,

“DeepChess: End-to-End Deep Neural

Network for Automatic Learning in Chess,”

Artificial Neural Networks and Machine

Learning – ICANN 2016 Lecture Notes in

Computer Science, pp. 88–96, 2016.

[11] Omran, Alaa Hamza, Yaser M. Abid, and

Huda Kadhim. "Design of artificial neural

networks system for intelligent chessboard."

In 2017 4th IEEE International Conference

on Engineering Technologies and Applied

Sciences (ICETAS), pp. 1-7. IEEE, 2017.

[12] M. Lai, “Giraffe: Using Deep Reinforcement

Learning to Play Chess,” M.Sc. thesis, Dept.

Computing., Imperial College London,

London, 2015.

[13] M. Sabatelli, F. Bidoia, V. Codreanu, and M.

Wiering, “Learning to Evaluate Chess

Positions with Deep Neural Networks and

Limited Lookahead,” Proceedings of the 7th

International Conference on Pattern

Recognition Applications and Methods,

2018.

[14] J. Czech, M. Willig, A. Beyer, K. Kersting,

and J. Fürnkranz. (Aug. 2019). Learning to

Play the Chess Variant CrazyHouseAbove

World Champion Level with Deep Neural

Networks and Human Data. [Online].

Available: https://arxiv.org/abs/1908.06660

[15] Zhang, Liqun, Lili Ding, and Zhenlai Li.

"The design of Surakarta chess battle

platform in computer game." In 2013 25th

Chinese Control and Decision Conference

(CCDC), pp. 2332-2335. IEEE, 2013.

[16] Nair, Anushka, KankshaMarathe and

SuvarnaPansambal. “Literature Survey of

Chess Engines.” International journal of

engineering research and technology 5

(2018)

[17] Sharma, Diwas, and Udit Kr Chakraborty.

"An Improved Chess Machine based on

Artificial Neural Networks." International

Journal of Computer Applications®(IJCA)

(2014):097

